

Possible Integrated

8 GeV Program

after the Tevatron Collider Era

Robert Bernstein, FNAL

Stolen from Chuck Ankenbrandt and Milorad Popovic

NP08

Central Question:

- How Does Muon Program fit with other FNAL Options before and during Project X era?
- Can we build a consistent program at the Intensity Frontier together with our Neutrino Oscillation Program?

• Disclaimers:

- This is one possible plan and I will show options within the overall structure
- Not thoroughly reviewed or part of any official FNAL plan
- "Existence" Argument and a possible way to think about integrated program
- This plan *not* consistent with antiproton program
 - Uses existing Accumulator/Debuncher
 - therefore would need another ring

Theme:

- FNAL has multiple 8 GeV rings:
 - Booster
 - Accumulator
 - Debuncher
 - Recycler
- This gives us considerable flexibility in manipulating beam time structure and overcoming limitations of any individual ring
- Allows us to run Neutrino Program at 120 GeV at the same time as 8 GeV program

Remainder of Talk:

- Proposed Experiments
- Physical Layouts and Beam Transfer Schemes
 - Three phases in development:
 - Booster Era (current arrangement after TeV shutdown)
 - Project X Era (Beam Power = 200 kW @ 8 GeV)
 - Upgraded (2MW) Project X Era Experiments
- Issues to Consider:
 - Possible Locations for Experiments
 - Beam Requirements
 - Providing the required proton time distributions
- Summary

Experiments and Their Requirements

- Various groups would like to do experiments made possible by intense 8-GeV proton beams:
 - Muon-to-electron conversion
 - Muon g-2
 - K -> $\pi \nu \nu$ (with neutral and charged kaons)
 - Muon test beams
 - Neutrino factories based on muon storage rings
 - Muon colliders
 - Accelerator physics research and development
- Experiments want to start as soon as possible!
- Many want to start at lower beam power and then upgrade to high beam power, learning as they go
- Different Experiments need different time distributions for the proton beam: must deal with incompatibilities.

Layouts and Beam Transfer Schemes

- Booster Era (≈25 kW @ 8 GeV)
 - Mu2e, g-2, Nova (120 GeV)
- Project X Era (Beam Power ≈200 kW @ 8 GeV)
 - Mu2e, g-2, Kaons,... and NovA at 120 GeV
- Upgraded (≈2MW) Project X Era
 - Upgrade all 8 GeV experiments and Nova?
 - DUSEL? (Deep Underground Lab at Homestake)
 - proton decay @ 10^{35} yr + neutrino oscillations
 - Liquid Argon (100 kT) or Water Cerenkov (1 Mton?)
 - See Neutrino Session (also Project X workshop at FNAL)

http://www.fnal.gov/directorate/Longrange/Steering_Public/workshop-physics-2nd.html

A Schematic View of DUSEL

A schematized view circa 2015 + possible expansions

Booster-era Beam Transfer Scheme

New 200-kW target station that can be upgraded to >2 MW

Beam Path to 200kW target station in Project X Era

New Ring for 2 MW Era

- Probably can't upgrade Accumulator/Debuncher much past 200 kW
- Therefore will need new ring to perform beam structure manipulations

Beam Path to 2 MW target station in Project X Era

Beam In Upgraded Project X Era

- Possible Neutrino Factory
- Beam from Project X Linac into 2 MW station, making muons
- Then many choices
 - Mu2e
 - g-2
 - Kaons
 - Into recirculating linacs for neutrino factory
 - Neutrinos off to DUSEL?

Path of Beams to 4 GeV v Factory in Project X Era

The Experiments

- Muon-to-electron conversion
- Muon g-2
- $K \rightarrow \pi \nu \nu$ (with neutral and charged kaons)
- Muon test beams
- Neutrino factories based on muon storage rings
- Muon colliders
- Accelerator physics research and development

mu2e Apparatus

AP0-target station: Possible Home for Mu2e

R. Bernstein Fermilab 6 March 2008

mu2e Apparatus Oriented Vertically

Vertical offset is about 6 meters

Need to rotate apparatus to fit in AP0

Mu2e and g-2

- Have Chosen to make civil construction as simple as possible: new tunnel from Debuncher to Experiments
- How Do We Get Beam to both Mu2e and g-2?
 - Let's say mu2e upstream...
 - Can remove beam stop in mu2e?
 - (but beam stop part of return yoke)
 - Can Build bypass (not shown)
- Beam Requirements not compatible
 - Experiments need to run at different times, or in different cycles
- Have Chosen Schemes that keep < 200 kW in Accumulator, Debuncher
 - Variety of Schemes Possible; will show two
- If Upgrades to Project X > 200 kW, probably new ring to replace Accumulator/Debuncher

Beam Requirements for mu2e Experiment

- Beam Power
 - Booster era: ~ 25 kW
 - Project X era: ~ 100 kW (~200 kW with upgrade)
- Proton time distribution
 - Slow spill with high duty cycle
 - Bunch length <~ 100 nsec(minimize prompt backgrounds)
 - Bunch separation 1.7 μ sec (μ lifetime)
- Creating the proton distribution in Booster era
 - Momentum-stack three Booster batches in Accumulator
 - Rebunch into one ~100 nsec bunch
 - Single-turn transfer single bunch to the Debuncher
 - Slow spill resonantly from the Debuncher
 - Resonant slow spill: make beam a little unstable transversely, near harmonic; protons leave core and directed to another beamline
 - Repeat the above sequence twice per MI cycle

Booster-Era Beam Timelines for mu2e Experiment

The Muon g-2 Experiment at BNL

(Can be relocated to Fermilab)

Beam Requirements for g-2 Experiment

- Proton beam power
 - Booster era: ~ 25 kW
 - Project X era: up to 200 kW or more
- Proton time distribution
 - Single-turn fast extraction of single bunches
 - Bunch length <~ 25 nsec
 - Bunch separation >~ one msec
- Creating the proton distribution in the Booster era
 - Momentum-stack three Booster batches in the Accumulator
 - Rebunch at ~26.4 MHz (one 100 nsec bunch in mu2e)
 - Single-turn transfer all 42 bunches to the Debuncher (single bunch in mu2e)
 - Extract bunches individually from the Debuncher (resonant slow-spill in mu2e)
 - Repeat the above sequence twice per MI cycle

Booster-Era Beam Timelines for g-2 Experiment

Can Slow Extract in a Range of Proton Pulse Lengths: 10 nsec shown

Neutral Kaon "Kopio" like detector space requirements....

Transverse (elevation view) dimensions: 5mx5m maximum.

Longitudinal (plan view) dimensions : $10m (of 5m \times 5m) + 10m (of 3m \times 3m)$

Rare K Decay Experiment Requirements

- Beam Power
 - Booster era: ~ 25 kW
 - Project X era: 200 kW or even more
- Proton time distribution for KOPIO-like experiment
 - Slow spill with high duty cycle
 - Bunch length <~ 300 psec (the shorter the better)
 - Bunch separation ~ 40 nsec
- (Charged K exp't can use KOPIO beam time structure)
- Creating the proton distribution in the Booster era
 - Momentum-stack three Booster batches in the Accumulator
 - Rebunch at ~26.4 MHz
 - Single-turn transfer all 42 bunches to the Debuncher
 - Add high-frequency rf harmonics of 26.4 MHz to ring voltage
 - Center of bucket slightly higher momentum to get short bunch length
 - Resonantly extract that perturbed piece from the Debuncher
 - Repeat the above sequence twice per MI cycle

Can This Work for Project X?

- Assumption of < 200 kW/ring
- Each "pulse" from Linac about 50 kW
- Manipulate beam to keep four pulses (< 200 kW) in any ring
- If Upgrades to Project X, will need to rethink all schemes!

One Possible Set of Beam Timelines for Project X Era

2 MW Target Station for v Factory or Muon Collider

Summary: Advantages of the Proposed Plan

Flexible

- Experiments can start with Booster beam, then transition to beam from Project X without relocating.
- Beam time can be shared flexibly.
- Economical
 - Existing infrastructure is intensely used.
 - Only one new short tunnel to begin
 - Only one new high-power target station/exp't hall
 - All (or most?) 1st-round experiments located in one area
- It can be implemented rapidly.
 - The new tunnel could be built soon
- It provides a path back to the energy frontier.
 - Target station is located in line with a long-term plan